Synopsis
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioural pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signalling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Dietary supplement therapy
Research studies have reported that certain vitamins (e.g., vitamin B6, B12 and D; folic acid) [270,271], omega-3 polyunsaturated fatty acids (PUFAs) [272], probiotics [273], and certain chemicals from plants (e.g., lignans and radicicol) have an effect on reducing hyperhomocysteinemia and gastrointestinal problems, as well as improve ASD symptoms. Several studies have also reported positive results linked with general dietary treatments, such as gluten-free and casein-free diets, which are thought to improve GI function, reduce gut flora dysbiosis, and improve some ASD behavioural symptoms [274]. However, the efficacy and safety of such dietary therapies need to be confirmed by further investigations.
In conclusion, nonpharmacological therapies can partially alleviate symptoms of autism. Despite the absence of sufficient data, the therapeutic effects of behavioural and psychological treatments, brain stimulation, and dietary therapies for individuals with autism appear to have a theoretical basis in neurobiochemistry and signal transduction.
Analysis
Lignans positively impact this condition and provide some symptomatic improvement. While this needs further investigation, this helps provide those affected with autism with a positive dietary change that could potentially alleviate some of the symptoms that they experience.